
Copyright (c) 2003 Intellitech Corp. All rights reserved.

Infrastructure IP for
Programming and Test of in-system

Memory Devices

CJ Clark and Mike Ricchetti
Intellitech Corporation, 70 Main Street, Durham, NH 03824

cjclark@intellitech.com and miker@intellitech.com

Abstract

Today’s efforts to reduce both system
manufacturing costs and in-the-field in-system
upgrades requires new flexible and cost effective
methods of testing complex memories and
programming non-volatile memories. FLASH
memory, Serial EEPROM, SDRAM, NAND memory,
FCRAM and DDRRAM, all present problems for
efficient in-system programming and test in systems
with limited physical access. Reduced contact methods
based on IEEE 1149.1 for testing PCBs and Systems
rely more and more on in-chip Design for Test (DFT).

The IC and SoC designer can add differentiation and
value not just by incorporating design features and
Design-for-Test for the IC, but by considering the
target system that the IC/SoC may be used in. This
practice is, of course, common in vertically integrated
companies, but not standard practice by independent
silicon vendors. The silicon vendor that can lower not
only his customer’s cost of the part, but also the entire
cost of using the silicon can gain a competitive
advantage.

This paper describes a patented architecture that is
applicable to any silicon that is coupled to any of the
aforementioned memory types. The example used in
the paper, however, is for an external FLASH memory.
Traditional methods of programming the FLASH and
their drawbacks are described here and are compared to
the Fast Access Controller (FAC) architecture.

Introduction
FLASH memory is commonly used in processor and
microcontroller based designs to store the system’s
firmware. Modern day PCBs with mezzanine cards,
and complex multi-board systems, may have multiple
processors each with their own local FLASH memory
for storing program code. FPGA logic may also be

loaded from a dedicated FLASH device, so a complex
multi-board system may typically have 3-4 different
FLASH devices, with more for larger systems. The re-
programmability of FLASH offers the flexibility for
upgrades and bug fixes when product designers adopt a
method for in-system non-volatile memory
programming. In-system programming also enables
the FLASH devices to be programmed with the latest
firmware release during the manufacturing process.
This avoids keeping an inventory of pre-programmed
non-volatile memory parts.

There are many ways to program FLASH memory
(stand-alone programmers, in-line programmers, in-
circuit emulation equipment, in-circuit “pogo-pin”
testers, and boundary-scan testers), each method has
certain drawbacks such as cost and slow FLASH
programming times. Each method is also just a point
solution targeted for only one phase of the product’s
life, for instance in-line programmers cannot easily be
used during engineering prototyping, emulation
equipment can’t easily be used in production test. If a
system is being designed to enable remote software and
FPGA logic updates, yet, another solution must be
devised to allow each individual FLASH to be updated
when the product is in the field. In some cases, 3 or 4
of these programming methods are used, each one
costing more in equipment and engineering resources
to support over each phase of the product’s life.

Consequently, a structured access method for all
system non-volatile devices is needed in order to
reduce costs and provide fast, flexible, upgrades and
re-configuration. The patented FAC architecture [2],
[3] enables in-system programming of volatile and
non-volatile memory devices as fast as off-board, or
direct access, programming techniques. More
importantly, it provides a unified method in all
environments and throughout the product’s life cycle.

Copyright (c) 2003 Intellitech Corp. All rights reserved.

Current FLASH Programming Methods
The following subsections briefly describe traditional
method used to program FLASH memory devices.

Gang and In-Line FLASH Programmers
The major problem with using gang FLASH-
programming stations is that this method increases
inventory, adds to manufacturing complexity and cost,
and requires early software code freezes. Prior to
production, software engineering must finalize code so
FLASH parts can be programmed and inventoried.
The FLASH parts have to be manually loaded on the
programming station, the FLASH is then programmed,
then the newly programmed parts have to be
inventoried and then eventually inserted onto a board.
If a last minute software change is needed, this process
needs to be repeated. This has forced some OEMs and
Contract Manufacturers (CMs) to program FLASH
devices using ‘inline programmers’ during
manufacturing to achieve automatic device handling
and the elimination of inventories of programmed
parts. However, only very high volume products can
justify the cost of an inline programmer. The higher
the volume, and the larger the FLASH device
(requiring more FLASH to be programmed in parallel),
the more costly the inline programmer solution is.
Multiple inline programmers may even be needed to
allow for certain types of line balancing typically done
with multiple assembly and test lines. Other
disadvantages include; new techniques must be
developed to re-program the FLASH for updates after
the PCB leaves the manufacturing floor; opens testing
to the pre-programmed FLASH device requires
additional test engineering time, and finally pre-
programmed FLASH will inevitably be placed on
PCBs with manufacturing defects, which increases
overall costs.

Using ICT for FLASH Programming
OEMs have also leveraged In-Circuit Testers (ICT) to
program FLASH parts on-board. This method allows
testing the PCB interconnects first, i.e. prior to FLASH
programming, and provides reasonable programming
performance. However, this can greatly impact the
design as it requires the designer to add test points for
direct access to all FLASH device pins. With the
increased use of BGA technology, adding test points or
enlarging VIAs may not be possible without delaying
design schedules, increasing layout area or impeding
critical timing paths. Like, inline FLASH
programming, ICT is not a highly flexible FLASH
programming platform because programming FLASH
using ICT cannot be done outside of the manufacturing
facility, for example in the field. Furthermore, it

requires that a new test program be developed and re-
compiled each time there is a change in the FLASH
memory contents. Some ICT can program FLASH
memory with boundary-scan based software, (see
boundary-scan FLASH programming below) while this
removes the need for the test points, this approach is
the most costly of any of the methods described. Since
programming large FLASH through boundary-scan can
take minutes, the ICT cannot be testing any other PCBs
during that time, the throughput and tester utilization
suffers. Allocating the long programming times onto
high dollar per hour test platforms such as ICT
increases costs and affects throughput, since ICT is a
“one-at-a-time” approach.

FLASH Programming Using Emulation Tools

Some FLASH devices can be programmed in-system
through an adjacent system processor (CPU, Micro
Controller or DSP). This method requires the use of an
in-circuit emulation (ICE), or background debug mode
(BDM) tool and hardware pod. The ICE/BDM
downloads a small FLASH loader program via the
processor debug port to the processor’s RAM, and then
the processor delivers the program data to the FLASH.
In the lab, this method provides good programming
performance and is relatively easy to use for embedded
software developers. However, new processors, even
those in the same family require new loaders, new
FLASH devices require new algorithm files to program
the FLASH and in some cases the FLASH
programming loader is design dependent requiring
changes to support other designs that might address the
FLASH differently. Finally, setup and verification
must be done by engineers familiar with both the
software and the design, such as firmware engineers,
and typically is not practical for production personnel
to support when something goes wrong.

In a manufacturing environment using an ICE/BDM
pod to program FLASH has several disadvantages.
First, the ICE/BDM hardware and software must be
integrated with manufacturing test equipment and
manufacturing failure tracking database and software.
Today’s CM’s and EMS’ companies need
‘standardized’ production lines that can quickly handle
switching to different customers. Integrating a
ICE/BDM for a particular product can add to this the
complexity. Since the emulation pod is only used for
this function it increases test equipment costs and
requires integration of diagnostic information with
other test equipment, or adds another step in the
process since the ICE based solution can not perform
other manufacturing tests (such as IC to IC

Copyright (c) 2003 Intellitech Corp. All rights reserved.

interconnect tests, that would require the addition of
boundary-scan tools). A further disadvantage for
manufacturing with this method is that it requires the
board to have a working processor and some defect-
free scratch memory, so that a processor-specific
FLASH loader program can run. And with no software
loaded in the FLASH, testing the processor
connections to other devices and the FLASH would
first need to be done through another means, such as
boundary-scan or ICT. Otherwise, when the ICE/BDM
pod is used, the small FLASH loader may fail to load
and without diagnostics to help it would be difficult to
pinpoint the failure (which can be one of dozens of
connections the CPU needs in order to execute the
loader program).
 Further problems exist in that many
ICE/BDM based emulation pods require that the CPU
be on a separate scan-chain from other 1149.1 devices.
Multiple, separate, scan-chains on a PCB can add to the
complexity of the PCB scan-chain design itself,
manufacturing interfaces and access during field
updates. Deploying ICE/BDM equipment to a world-
wide distribution of field service personnel for the
purpose of updating just the FLASH connected to the
microprocessor (and using a separate tool for serial
EEPROM for instance) in the field is not cost effective.

FLASH Programming with Boundary-Scan
Weaknesses with the above FLASH-programming
techniques have led to increased use of the standard
IEEE 1149.1 [1] test infrastructure, using the EXTEST
boundary scan instruction to access the FLASH devices
for programming. This technique has limited impact
on the design and only requires that the FLASH
memory’s address, data and control signals be directly
connected to an IEEE 1149.1 compliant device, so that
the device’s boundary register can be scanned to
perform FLASH write sequences in EXTEST.
Although there is little design impact, in-system
programming of FLASH devices using this method has
serious performance issues. Given the large pin count
of today’s boundary scan devices, and the number of
boundary-scan devices used on a board, the length of
the scan path becomes a major limiting factor in
FLASH programming times when using this method.
Other factors such as the maximum TCK frequency
achievable on the PCB, the amount of program data to
be written, the number of scans the FLASH device
requires for each write cycle, and the “burn time”
requirements of the FLASH device, also impact the
total programming time. While it has been suggested
by some to add direct physical access to the FLASH
device’s Ready/Busy pins, if the time to scan a long

boundary-scan chain is longer than the minimum
FLASH “ready” time, no benefit is gained. The
majority of the time in programming the FLASH is
shifting the data through the long boundary-registers.
Incorporating physical access to the FLASH write
enable (WE) input can cut the programming time
almost in half, however in practice reducing the
programming time by half will not result in an
acceptable improvement. Programming times in the
tens of minutes are still not practical in a
manufacturing environment. In the field, especially in
remote areas of the world, it may not be economical to
supply all field personnel with high-speed boundary-
scan controllers capable of delivering data at 10-
20Mhz.

Furthermore, the added cost of carrying the direct
access through pins and routes in a passive backplane
or multi-PCB design cannot be overlooked. In
complex multi-PCB systems, adding physical access to
these pins requires additional design time and adds
components and design complexity. “Buffered Factory
programming” techniques implemented in the FLASH
itself offer no speed up in FLASH programming when
the EXTEST technique is used since each word or byte
must still be scanned in through the boundary-scan
chain.

In-system Programming using the FAC
In order to overcome the obstacles presented above, the
internal development for a Fast Access Controller
began in 1997, followed by formal patent write-up at
the end of 1999 and provisional patent filing with the
USPTO in March of 2000. The FAC is an
infrastructure IP block [5] designed to provide for
high-speed, high-throughput, in-system configuration
and test of memories. It leverages the test
infrastructure of IEEE Std. 1149.1 to enable in-system
programming of FLASH and other non-volatile
memory devices, as fast as off-board or direct access
programming techniques. The FAC can achieve
optimal programming throughput of FLASH devices,
even with lower test clock rates (<3Mhz). The scan
length or number of 1149.1 devices in the boundary-
scan chain of the PCB does not affect the FAC
architecture. As a result, the performance issues
associated with 1149.1-based in-system FLASH
programming, using the EXTEST approach, are
eliminated.

Copyright (c) 2003 Intellitech Corp. All rights reserved.

Figure 1. IC with Boundary Scan and Fast Access Controller (FAC)

The performance achieved by the FAC is made
possible by the novel features of the architecture,
which are described below. These features combine to
minimize the number of scan operations and serial scan
data required during FLASH programming or memory
testing. The memory protocols of the FAC are
programmable in-system, through PC based boundary-
scan tools. The FAC is also customizable in-system,
which allows it to support access to a wide variety of
memory devices such as NOR FLASH, NAND
FLASH, EEPROM, Serial EEPROM, SRAM, SDRAM
and DDRAM and other memory devices. Flexibility is
key to the design as when the FAC is implemented in a
CPU or ASIC, typically the target memory type or
memory manufacturer is not known at design time.
The FAC enables an IEEE Std. 1149.1 bus to be used
as a central bus for in-system configuration of all on-
board non-volatile memory devices. In addition, it
provides a single non-volatile programming method
that can be used in the field, during prototype bring-up,
and for manufacturing test and configuration.

The FAC Architecture
A block diagram of the FAC is shown in Figure 1.
The FAC is comprised of several functional blocks: the
Address Generator (AG), the Programmable Control
Sequencer (PCS), the Programmable Data Sequencer
(PDS), the Data Register (DATA) and the
programmable Finite State Machine (PFSM.

In this example implementation of the FAC
architecture, the FAC is embedded in an IC, such as an

ASIC or FPGA, and interfaces to a FLASH memory
device. The interface to the FLASH is through
multiplexers that select between the system logic and
the FAC. This multiplexing can be integrated into the
Boundary Scan Register (BSR), as shown in Figure 1.
The FAC also interfaces to other 1149.1 logic, such as
the Instruction Register (IR). It may optionally take
system clocks as inputs. These system clocks enable
the FAC to access a memory device for at-speed test to
memories especially SDRAM and DDRRAM. When
full speed access is not required, the FAC may operate
from only the TCK clock of the TAP.

The FAC operates through specific FAC-based 1149.1
instructions, together with the sequencing of the PFSM.
Figure 2 shows the state diagram of the FAC’s PFSM.
As can be seen, the PFSM is an extended version of the
standard IEEE 1149.1 TAP Controller FSM. The
PFSM includes a modified DR branch in the state
machine, which provides for programmable states.
These programmable states are decoded and used to
control the operation of the FAC, the FAC registers
and the protocols it generates. The FAC branch is
taken from the Select-DR-Scan state when there is a
FAC specific instruction loaded into the IR, i.e.
FAC_Op = 1 and TMS = 0. This FAC_Op branch
provides the ability to perform protocol sequences that
are not possible to perform in the DR branch of the
standard 1149.1 TAP controller FSM. Because the
PFSM allows programmable states, the placement of
the Capture-DR, Update-DR and Pause-DR states in
the FAC_Op branch can be determined based on the
FAC instruction and its operation. This removes the

Copyright (c) 2003 Intellitech Corp. All rights reserved.

restrictions of the fixed protocols in the standard TAP
controller FSM, allowing for an extended test
capability. Nevertheless, the PFSM remains
compatible with the standard IEEE 1149.1 architecture.
An example of FAC operation for a
FLASH_PROGRAM instruction is provided in the
next section.

The PFSM states are defined as follows:
� Enter-FAC. Enables the FAC.

� APG1-DR. Enables FAC operations concurrent
with DR shift. May also be used for Pause-DR.

� Update1/Capture1-DR. Programmable Update-
DR and/or Capture-DR and FAC operation.

� APG2-DR. Enables FAC operations concurrent
with DR shift. May also be used for Pause-DR.

� Update2Capture2-DR. Programmable Update-DR
and/or Capture-DR and FAC operation.

� Exit-FAC. Disables the FAC.

Figure 2. The Programmable FSM of the FAC’s

TAP Controller

Figure 3. FAC Block Diagram

Figure 3 shows a more detailed diagram of the
functional blocks in the FAC, and how they interface to
each other. The PFSM connects to an IR, to the other
FAC blocks, and to the standard 1149.1 DRs of the IC
(i.e., the Bypass Register and a BSR, which are not
shown in figure 3). The FAC also has a number of
DRs, which can be accessed individually or in some
implementations all of the registers are linked together
except the DATA register which is accessed separately
during the reading or writing to the memory. Each of
the PCS, AG, DATA and PDS blocks shown in figure
3 has one or more DRs. These are used to load data,
address and control protocol into the FAC, either
initially or while it is in operation. The DRs may be
dedicated registers for use only during FAC operation,
or may be shared with the BSR or functional registers
(i.e., other internal scan registers) of the IC.

The FAC blocks receive control inputs from the PFSM
and the IR logic. The DR_Select control signals from
the IR are used to select the FAC DR to be shifted,
while the DR_Control signals from the PFSM are used
to control the scan shift operations of the DRs. The
FAC_Cntrl signals are also received from the IR logic,
which controls and enables FAC operation together
with the PFSM states.

During operation of the FAC the PCS provides the
FLASH’s Control signals via the test multiplexers,
shown in figure 3, in a pre-programmed sequence.
This control sequence, or protocol, is directly
programmable by means of the PCS DR(s). The PCS
is enabled to operate during the FAC_Op states of the
PFSM. Depending on the FAC instruction loaded into

Copyright (c) 2003 Intellitech Corp. All rights reserved.

the IR, and the PFSM state, the PCS will be started or
stopped, or simply continue to execute its protocol
sequence to the circuit connected to the FAC. The PCS
and the other functional blocks of the FAC are
permitted to execute concurrently with the operations
in the FAC_Op branch. For example, the PCS and AG
can operate during the APG1-DR (Shift-DR) state, so
that the data DR in the DATA logic can be scanned
concurrently while control and address signals are
being applied to the FLASH automatically by the PCS
and AG. This feature of the FAC architecture provides
for optimal scan-based access to the FLASH device.

In addition to sequencing the controls to the FLASH,
the PCS also interfaces to the other functional blocks of
the FAC, such as the AG, PDS or DATA, in order to
sequence them along with the protocol for accessing
the FLASH. For example, the PCS may select or
control a particular address sequence to be generated
by the AG, or a data sequence to be generated by the
PDS. During its operation, the FAC logic can be
synchronized with either the TCK clock or system
clocks, so that it can operate at the full system speed of
the memory device being accessed.

The AG logic outputs address sequences through the
test multiplexers onto the FLASH’s Address bus, as
shown in figure 3. By automatically providing address
sequences from the AG to the memory device
connected to the FAC, as opposed to providing the
addresses via the BSR, scan operations do not have to
be performed each time a new memory location is
accessed. The AG may contain one or more address
generation circuits. For example, it may include both
an address counter, to sequentially address the FLASH
during read/program operations, and an address
sequence generator, which is used to generate fixed
sequences of addresses for the FLASH’s program/erase
commands. Each of these generators in the AR logic
may have a DR and instructions to scan the DRs allow
the AR address registers to be initialized to a starting
address if desired. The address generation sequences
are selected and controlled by specific FAC
instructions, the PFSM and the PCS. For example, in
the FLASH implementation of figures 1 and 3, during a
read operation controls from the PCS signal the AR to
advance to the next memory address to be accessed by
the FAC as the read protocol is being sent by the PCS.

The DATA and PDS logic shown in figure 3 provide
for read/write operations, and special data sequences,
to/from the FLASH device. The DATA register is a
DR that can be scanned during FAC operation to scan-
in write data, to be written to the memory, or scan-out
read data, that has been read from the memory. In the

FLASH implementation of figures 1 and 3, the PDS is
programmed with data sequences required for the
FLASH’s program/erase commands. The DATA and
PDS logic are controlled based on the instruction
loaded in the IR, the PFSM states, and the PCS
protocol. For example, during a FLASH_PROGRAM
instruction, the DR of the DATA logic is scanned
during the APG1-DR state, while the PDS outputs data
values for a program command sequence to the
FLASH data bus. The DATA DR being separate from
the PDS DR allows it to be scanned concurrently,
while the PDS is outputting data and the PCS is
outputting control signals. When read or write data
from the FLASH is transferred from/to the DATA DR,
it receives the proper control input for Capture and
Update operations from the FAC TAP DR_Control
signals.

Table 1 illustrates this concurrent operation of the
functional blocks in the FAC. The table shows a short
sequence of PCS controls and the data and addresses
output by the PDS/DATA and AR respectively. As the
PCS sequences through the FLASH’s CEN, OEN and
WEN controls, the AG and PDS output fixed address
and data sequences corresponding to a FLASH
program command. During this sequence, the DR in
the DATA logic can be scanned with write data. When
the PCS’s CTA and CTD control is 1, it selects the
address and write data for the program command to be
sourced from the AG’s address counter and the
DATA’s DR, respectively. CTA and CTD are separate
for other types of memories where the Address is not
delivered in the same sequence as the data as it is with
the example FLASH. The signals in the shaded area of
Table 1 are for implementing the sequences for use
with NAND FLASH devices and DRAM devices. In
the FAC implementation Table 1, essentially has
equivalent sized scan registers that are filled during
FAC initialization with the values to be used for a
particular memory. The CMP signal can be used to
force a comparison between the data in the data register
(the data written) and a subsequent read back of the
data from the memory. This should be done with
caution as it does not allow ‘data uniqueness’.
Consider if the device is a EEPROM or SRAM, if data
is read back directly after writing then all address lines
could be stuck, yet verification would pass as each
unique data value would be written over and over to
the same address.

FAC Operation
To further illustrate the operation of the FAC, the
following steps provide an example of how a
FLASH_READ instruction works.

Copyright (c) 2003 Intellitech Corp. All rights reserved.

Table 1. Example FAC PCS, AG and PDS/DATA Sequencing

The read starts with the following FAC initialization
steps:

1. Reset the TAP controller. This will also reset the

FAC.
2. The PRELOAD instruction and the boundary-

register is loaded into the IC with the FAC and
other ICs that are present on the PCB as needed.

3. Load the SHIFT_PCS_AR instruction into the IR.
Load the PCS’s DR with the read protocol and
initialize the AR with a starting address.

3. Load the FAC_READ instruction into the IR.

4. The FAC_READ instruction sets FAC_Op = 1,

enabling FAC operation. Subsequent TAP
controller protocol is decoded on the FAC_Op
branch of the PFSM, it also selects the DR in the
DATA block.

After the read instruction is updated, the following
steps are taken:

5. Transition the PFSM to Enter-FAC to start the

FAC operation.
6. The PFSM moves to APG1-DR and the DR in the

DATA logic is shifted. Concurrently, the PCS and
AR apply a read sequence to the FLASH with the
first address in the AR address counter DR.

Note that the initial scan-out data that is shifted out of
the DR is “don’t care” data, since the first read has not
been completed. Scan-in data is not used during reads,
so it can be set to all ones or all zeroes data.

7. When the PFSM enters Update1/Capture1-DR the

last bit of the DATA DR is shifted. During this
DR shift, the read cycle to the memory completes.

8. The PFSM transition through Update1/Capture1-
DR and entering APG2-DR the data read from the
FLASH is captured into the DATA DR.

9. The PFSM is moved back to APG1-DR and step 1
is repeated, with the data from the first read being
scanned out while the next address is read.

10. After the final read address has been shifted out of
the DATA DR, the PFSM can move directly from
Update1/Capture1-DR to Exit-FAC, and then back
to Run-Test/Idle.

When the PFSM enters Exit-FAC, it sets FAC_Op = 0
and disables the FAC operation. It should be noted that
in step 7, the FAC could wait in APG2-DR for
additional TCK cycles if “Pause-DR” time is required

for a particular FAC operation. For example, to
account for the burn time when programming the
FLASH.

TDO

CNTRL

U1
U2

W/ FAC

TCK

TMS

TDI TDO TDI

SRAM

CNTRL

ADDR

DATA

FLASH

 Figure 4.

AG 0x5555 0x5555 0x2AAA 0x2AAA 0x5555 0x5555 AddrCnt AddrCnt AddrCnt AddrCnt
PDS/
DATA

0x00AA 0x00AA 0x0055 0x0055 0x00AA 0x00AA DATA DATA DATA DATA

 CMP 0 0 0 0 0 0 0 0 0 1

CTA 0 0 0 0 0 0 1 1 1 1

CTD 0 0 0 0 0 0 1 1 0 0

DDIR 1 1 1 1 1 1 1 1 0 0

CEN[0] 0 0 0 0 0 0 0 0 0 0

OEN 1 1 1 1 1 1 1 1 0 0

WEN 0 1 0 1 0 1 0 1 1 1

A/D 0 0 0 0 0 0 0 0 0 0

RAS 0 0 0 0 0 0 0 0 0 0

CAS 0 0 0 0 0 0 0 0 0 0

BA[0..2] 0 0 0 0 0 0 0 0 0 0

CKE 0 0 0 0 0 0 0 0 0 0

 PC
S

CK 0 0 0 0 0 0 0 0 0 0

Copyright (c) 2003 Intellitech Corp. All rights reserved.

In order to disable the data bus on the PCB so FLASH
programming can begin, certain PCBs will require
components on the data bus to be put in EXTEST or
CLAMP. If U1 of Figure 4 did not support CLAMP
then its entire boundary-scan register would be in the
scan path with the FAC registers of U2. If the FAC
architecture required going through CAPTURE-DR or
UPDATE-DR, then programming performance would
be affected and throughput would not be much better
than using EXTEST alone. FAC data registers capture
and update data in the UPDATE1/CAPTURE1state of
the FAC TAP. Because of this U1 is does not go
through UPDATE-DR or CAPTURE-DR during the
programming operation of the FAC, thus giving FAC
based programming independent of scan-chain length.
The FAC TAP also enables shifting of data on TDO
during the APG2 state. During the APG2 state, status
of the RDY/DQ7 bit indicating programming has
completed, can be passed through the TDO back to the
IEEE 1149.1 controller. When RDY is asserted this
tells the 1149.1 controller (which is also FAC aware) to
proceed from waiting in the APG2 state to move to the
APG1 state to shift more data. By bringing the RDY
bit through this way, optimal 1149.1 programming can
be achieved without scanning a register or without
having direct physical access to the RDY pin. The
RDY status and the verification bit comparing the data
read with the data written can be combined and
returned on TDO during APTG2 as well. This can
signal to the 1149.1 controller during the write process
that the programming failed and further programming
can be halted. Alleviating the need to have direct
access to the RDY pin simplifies multi-PCB system
level designs and PCBs with daughter cards enabling
non-volatile memories to be programmed anywhere in-
system with access to just the 5 wire 1149.1 bus.

FAC Performance
Comparing the programming times for the EXTEST
Boundary Scan method, with that of the FAC, will
show the improved performance of the FAC. Using an
Intel StrataFLASH (28F128J3Ax16) as an example of
a typical FLASH device, the following can be used to
calculate the respective programming times:

� 128Mbits of memory, with a 16 bit data bus and

8M addresses.
� The typical burn time is 218us per buffer (16

words),
� 512k (524,288) buffer writes are required to

program the entire 128Mbit FLASH.
� The PCB containing the FLASH and IC with

Boundary Scan requires 736 BSR cells in the
1149.1 chain in order to access the FLASH device.

� The TCK clock rate is 10MHz.
� It takes 19 scan operations to program 1 buffer of

16 words.

Note that these specifications are taken from a
demonstration PCB that includes the Intel FLASH
device, and several other Boundary Scan devices. The
FAC was programmed into an FPGA with access to the
Intel Strataflash for the following calculations.

Using the Boundary Scan method, the time to program
1 buffer of 16 words is as follows:

Time for 1 buffer = 1/TCK * #BSR cells * #scans
 = 0.1us * 736 * 19 = 1.4ms

To program the entire FLASH requires:

Time for FLASH = buffer time * #buffers
 = 1.4ms * 524,288 = 734 seconds

Using the EXTEST method, it takes 12.2 minutes to
program the entire FLASH. Note that this does not
take into account the device burn time, which can be up
to 114 seconds or more for the entire FLASH. This
time is dominated by the shifting required to program
the FLASH. As Boundary Scan chains on ICs and
PCBs will continue to increase in length, the EXTEST
method is not a practical solution.

In the FAC implementation for the StrataFLASH, there
is a DATA DR that holds one write buffer worth of
data, so the scan length is 16 data bits * 16 words, or
256 bits long. In addition there are two extra TCK
cycles per buffer write, to account for the transition of
the FAC TAP through APG2-DR and
Update2/Capture2-DR. Using the FAC method, the
time to program 1 buffer of 16 words is:

Time for 1 buffer = 1/TCK * #BSR cells * #scans
 = 0.1us * 258 * 1 = 25.8us

To shift data to program the entire FLASH requires:

Time for FLASH = buffer time * #buffers
 = 25.8us * 524,288 = 13.5 seconds

Since the shifting of the next data and the ‘burn time’
of current data can occur concurrently, the shifting time
is negligible and the ‘burn’ time dominates. The Intel
specification for this part is 218us typical per buffer
with 524,288 buffers, the total typical burn time is
approximately 114 seconds. However, in practice, the
‘burn’ time was significantly lower. The total
programming time of some sample parts was

Copyright (c) 2003 Intellitech Corp. All rights reserved.

approximately 104 seconds accounting for some
software overhead. Most of the time is due to waiting
for the FLASH, and is not because of shifting data, as
was the case for EXTEST based programming. While
verification can be done while programming with the
FAC, data uniqueness was required for the customer
and the FLASH was read back as a separate function.
This takes 18 TCK cycles per word for 8M locations,
which at 10Mhz takes approximately 15 seconds, 4
seconds at a 40Mhz TCK rate.

Related work
After the invention of the FAC, but prior to the
granting of the US patent, a method in the spirit of the
FAC technique has been presented at ITC [4]. The
reader should not assume the technique described in
the ITC paper is in the public domain. It should be
noted from the above descriptions that a full FAC
implementation is more generic than what was
described. In [4], the method requires going through
CAPTURE-DR and UPDATE-DR after shifting each
address and data. The programming times given are
good only for a single device in the scan-chain. If the
device were in the scan path with other on-board
devices then the address and data would have to be
shifted through those devices for each word to
program. On PCBs with many devices in EXTEST,
the programming times would be impacted and as long
as EXTEST programming times. The same problem
exists for performing a scan operation to read the DQ7
or RDY bits. If the device is in a scan-chain with other
devices, it can take far longer to shift out the status bit
than it takes for the typical ‘burn time’. The
verification immediately after programming also
described is a FLASH memory only solution, as it
would not be appropriate for EEPROM programming
or SRAM test. No mention in the paper was made on
how the pass/fail status could be examined during
programming so programming would halt early on for
failing devices. Further, the verification method
described in [4] is for production only, it would not
allow data to be downloaded from a memory to a PC
for the purpose of debugging during bring-up. The
ITC paper does not describe whether it can be
sequenced by a system clock or by TCK. Without
access to the system clock, at-speed tests are not
possible. Further, if a state machine is sequenced only
by the TCK, then provision must be provided for
handling sequences that are longer than the amount of
data to shift. For instance, writing to a Serial
EEPROM as can be done with the FAC requires many
TCK cycles which can be handled by the FAC in the
APG2 state.

Conclusions and future work
The FAC provides a novel solution for programming
external FLASH in a production environment. It
avoids many of the problems with traditional FLASH
programming methods and boundary-scan based
programming while it lowers overall product costs and
downstream PCB manufacturing costs. The
programming performance of the FAC has been shown
to be superior to other in-system programming
methods, programming FLASH memories as fast as
off-board or direct access programming solutions can.
Similar performance can be achieved for other non-
volatile memories such as I2C and SPI EEPROMS,
NAND FLASH. The flexibility of the FAC allows it to
be implemented in an ASIC or CPU where the target
PCB scan-chain length is unknown and the non-volatile
memory type is unknown at the time of design.

The FAC enables an IEEE Std. 1149.1 bus to be used
as a central bus for in-system configuration of all on-
board non-volatile devices, and it provides a single
non-volatile programming method that can be used on
systems in the field, during prototype bring-up, or for
manufacturing production. This enables last minute
updates to non-volatile to be done during
manufacturing, and it eliminates the need for costly
inventories of pre-programmed devices or costly
capital equipment to program in-line. In addition,
manufacturing can realize shorter programming times
and improved throughput on the manufacturing floor.

Boundary-Scan test techniques introduce the similar
problems for DDDRAM and SDRAM test and debug.
The long scan-chains and typical slow speed make it
impossible to test the interconnects to most dynamic
RAM. Since the density of the typical dynamic
memory is high, small vias (or no vias) must be used
during the design of the PCB. Systems integrators
have difficulty in inserting additional test pads for
testing these components with direct in-circuit
techniques. Therefore, significant time in design by
the System integrator and savings in test development
can be achieved if the silicon designer can envision the
environment his silicon will be used by his customer.
Since the FAC can operate at the system clock rate, the
FAC can perform at-speed interconnect testing to these
memories without requiring the system’s integrator to
insert test pads. The FAC mechanism facilitates
enables postmortem memory dumps of these external
memories without disturbing or requiring the system
CPU to function or execute code. This has two
benefits in that it can be used by the silicon designer
during prototype validation and then later by the
customer during system bring-up. Table 1, shows how

Copyright (c) 2003 Intellitech Corp. All rights reserved.

a single FAC access controller can be used to support
EEPROM, FLASH, NAND, DRAM and other memory
types that may be used. Since the IC/SoC design may
not be able to predict what external memory type the
system integrator may used, the configuration of the
fast access controller is done at run time through
standard IEEE 1149.1 software.

References
[1] IEEE Std 1149.1b-1994, “IEEE Standard Test
Access Port and Boundary-Scan Architecture”,
Institute of Electrical and Electronic Engineers, Inc.,
New York, NY, USA.

[2] Ricchetti, M., Clark, CJ, Dervisoglu, B., "Method
and Apparatus for Providing Optimized Access to
Circuits for Debug, Programming, and Test", US
Patent No. US 6,594,802, US Patent and Trademark
Office, Washington, D.C., March 23, 2000.
http://www.uspto.gov

[3] Ricchetti, M. Clark, CJ, Dervisoglu, B., "Method
and Apparatus for Providing Optimized Access to
Circuits for Debug, Programming, and Test", PCT
Patent Application WO0171876, World Intellectual
Property Organization, Geneva, Switzerland, March
23, 2000.

[4] de Jong, F., Biewenga , A.S., van Geest, D.C.L.,
Waayers, T.F., “Testing and Programming FLASH
Memories on Assemblies During High Volume
Production”, Proceedings of the IEEE International
Test Conference 2001, pp. 470-479.

[5] CJ Clark, Mike Ricchetti, “Infrastructure IP for
Configuration and Test of Boards and Systems”, IEEE
Design & Test of Computers, vol. 20, no. 3, May-June
2003, pp. 78-87.

[6] Ricchetti, M. Clark, CJ, "Method and Apparatus for
Optimized Parallel Testing and Access of Electronic
Circuits", US Patent Application 2003009715, US
Patent and Trademark Office, Washington, D.C., July
5, 2001. http://www.uspto.gov.

[7] Clark, CJ, Ricchetti, M., "Method and Apparatus
for Optimized Parallel Testing and Access of
Electronic Circuits", PCT Patent Application
WO03005050, World Intellectual Property
Organization, Geneva, Switzerland, July 5, 2001.
http://ep.espacenet.com

