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Abstract 
 

Today’s efforts to reduce both system 
manufacturing costs and in-the-field in-system 
upgrades requires new flexible and cost effective 
methods of testing complex memories and 
programming non-volatile memories.  FLASH 
memory, Serial EEPROM, SDRAM, NAND memory, 
FCRAM and DDRRAM, all present problems for 
efficient in-system programming and test in systems 
with limited physical access.  Reduced contact methods  
based on IEEE 1149.1 for testing PCBs and Systems 
rely more and more on in-chip Design for Test (DFT).   
 
The IC and SoC designer can add differentiation and 
value not just by incorporating design features and 
Design-for-Test for the IC, but by considering the 
target system that the IC/SoC may be used in.  This 
practice is, of course, common in vertically integrated 
companies, but not standard practice by independent 
silicon vendors.  The silicon vendor that can lower not 
only his customer’s cost of the part, but also the entire 
cost of using the silicon can gain a competitive 
advantage. 
 
This paper describes a patented architecture that is 
applicable to any silicon that is coupled to any of the 
aforementioned memory types. The example used in 
the paper, however, is for an external FLASH memory. 
Traditional methods of programming the FLASH and 
their drawbacks are described here and are compared to 
the Fast Access Controller (FAC) architecture. 

Introduction 
FLASH memory is commonly used in processor and 
microcontroller based designs to store the system’s 
firmware.  Modern day PCBs with mezzanine cards, 
and complex multi-board systems, may have multiple 
processors each with their own local FLASH memory 
for storing program code.  FPGA logic may also be 

loaded from a dedicated FLASH device, so a complex 
multi-board system may typically have 3-4 different 
FLASH devices, with more for larger systems. The re-
programmability of FLASH offers the flexibility for 
upgrades and bug fixes when product designers adopt a 
method for in-system non-volatile memory 
programming.  In-system programming also enables 
the FLASH devices to be programmed with the latest 
firmware release during the manufacturing process. 
This avoids keeping an inventory of pre-programmed 
non-volatile memory parts. 
 
There are many ways to program FLASH memory 
(stand-alone programmers, in-line programmers, in-
circuit emulation equipment, in-circuit “pogo-pin” 
testers, and boundary-scan testers), each method has 
certain drawbacks such as cost and slow FLASH 
programming times.  Each method is also just a point 
solution targeted for only one phase of the product’s 
life, for instance in-line programmers cannot easily be 
used during engineering prototyping, emulation 
equipment can’t easily be used in production test.  If a 
system is being designed to enable remote software and 
FPGA logic updates, yet, another solution must be 
devised to allow each individual FLASH to be updated 
when the product is in the field.  In some cases, 3 or 4 
of these programming methods are used, each one 
costing more in equipment and engineering resources 
to support over each phase of the product’s life. 
    
Consequently, a structured access method for all 
system non-volatile devices is needed in order to 
reduce costs and provide fast, flexible, upgrades and 
re-configuration.  The patented FAC architecture [2], 
[3] enables in-system programming of volatile and 
non-volatile memory devices as fast as off-board, or 
direct access, programming techniques.  More 
importantly, it provides a unified method in all 
environments and throughout the product’s life cycle. 
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Current FLASH Programming Methods 
The following subsections briefly describe traditional 
method used to program FLASH memory devices. 
 
Gang and In-Line FLASH Programmers 
The major problem with using gang FLASH-
programming stations is that this method increases 
inventory, adds to manufacturing complexity and cost, 
and requires early software code freezes.  Prior to 
production, software engineering must finalize code so 
FLASH parts can be programmed and inventoried.  
The FLASH parts have to be manually loaded on the 
programming station, the FLASH is then programmed, 
then the newly programmed parts have to be 
inventoried and then eventually inserted onto a board.  
If a last minute software change is needed, this process 
needs to be repeated.  This has forced some OEMs and 
Contract Manufacturers (CMs) to program FLASH 
devices using ‘inline programmers’ during 
manufacturing to achieve automatic device handling 
and the elimination of inventories of programmed 
parts.  However, only very high volume products can 
justify the cost of an inline programmer.  The higher 
the volume, and the larger the FLASH device 
(requiring more FLASH to be programmed in parallel), 
the more costly the inline programmer solution is.  
Multiple inline programmers may even be needed to 
allow for certain types of line balancing typically done 
with multiple assembly and test lines.  Other 
disadvantages include; new techniques must be 
developed to re-program the FLASH for updates after 
the PCB leaves the manufacturing floor; opens testing 
to the pre-programmed FLASH device requires 
additional test engineering time, and finally pre-
programmed FLASH will inevitably be placed on 
PCBs with manufacturing defects, which increases 
overall costs. 
 
Using ICT for FLASH Programming 
OEMs have also leveraged In-Circuit Testers (ICT) to 
program FLASH parts on-board.  This method allows 
testing the PCB interconnects first, i.e. prior to FLASH 
programming, and provides reasonable programming 
performance.  However, this can greatly impact the 
design as it requires the designer to add test points for 
direct access to all FLASH device pins.  With the 
increased use of BGA technology, adding test points or 
enlarging VIAs may not be possible without delaying 
design schedules, increasing layout area or impeding 
critical timing paths.  Like, inline FLASH 
programming, ICT is not a highly flexible FLASH 
programming platform because programming FLASH 
using ICT cannot be done outside of the manufacturing 
facility, for example in the field.  Furthermore, it 

requires that a new test program be developed and re-
compiled each time there is a change in the FLASH 
memory contents.  Some ICT can program FLASH 
memory with boundary-scan based software, (see 
boundary-scan FLASH programming below) while this 
removes the need for the test points, this approach is 
the most costly of any of the methods described.  Since 
programming large FLASH through boundary-scan can 
take minutes, the ICT cannot be testing any other PCBs 
during that time, the throughput and tester utilization 
suffers.  Allocating the long programming times onto 
high dollar per hour test platforms such as ICT 
increases costs and affects throughput, since ICT is a 
“one-at-a-time” approach. 
 
FLASH Programming Using Emulation Tools 
  
Some FLASH devices can be programmed in-system 
through an adjacent system processor (CPU, Micro 
Controller or DSP).  This method requires the use of an 
in-circuit emulation (ICE), or background debug mode 
(BDM) tool and hardware pod.  The ICE/BDM 
downloads a small FLASH loader program via the 
processor debug port to the processor’s RAM, and then 
the processor delivers the program data to the FLASH.  
In the lab, this method provides good programming 
performance and is relatively easy to use for embedded 
software developers.  However, new processors, even 
those in the same family require new loaders, new 
FLASH devices require new algorithm files to program 
the FLASH and in some cases the FLASH 
programming loader is design dependent requiring 
changes to support other designs that might address the 
FLASH differently.  Finally, setup and verification 
must be done by engineers familiar with both the 
software and the design, such as firmware engineers, 
and typically is not practical for production personnel 
to support when something goes wrong.  
 
In a manufacturing environment using an ICE/BDM 
pod to program FLASH has several disadvantages.  
First, the ICE/BDM hardware and software must be 
integrated with manufacturing test equipment and 
manufacturing failure tracking database and software.  
Today’s CM’s and EMS’ companies need 
‘standardized’ production lines that can quickly handle 
switching to different customers.  Integrating a 
ICE/BDM for a particular product can add to this the 
complexity.  Since the emulation pod is only used for 
this function it increases test equipment costs and 
requires integration of diagnostic information with 
other test equipment, or adds another step in the 
process since the ICE based solution can not perform 
other manufacturing tests (such as IC to IC 
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interconnect tests, that would require the addition of 
boundary-scan tools).  A further disadvantage for 
manufacturing with this method is that it requires the 
board to have a working processor and some defect-
free scratch memory, so that a processor-specific 
FLASH loader program can run.  And with no software 
loaded in the FLASH, testing the processor 
connections to other devices and the FLASH would 
first need to be done through another means, such as 
boundary-scan or ICT.  Otherwise, when the ICE/BDM 
pod is used, the small FLASH loader may fail to load 
and without diagnostics to help it would be difficult to 
pinpoint the failure (which can be one of dozens of 
connections the CPU needs in order to execute the 
loader program).   
 Further problems exist in that many 
ICE/BDM based emulation pods require that the CPU 
be on a separate scan-chain from other 1149.1 devices.  
Multiple, separate, scan-chains on a PCB can add to the 
complexity of the PCB scan-chain design itself, 
manufacturing interfaces and access during field 
updates.  Deploying ICE/BDM equipment to a world-
wide distribution of field service personnel for the 
purpose of updating just the FLASH connected to the 
microprocessor (and using a separate tool for serial 
EEPROM for instance) in the field is not cost effective.   
  
 
FLASH Programming with Boundary-Scan 
Weaknesses with the above FLASH-programming 
techniques have led to increased use of the standard 
IEEE 1149.1 [1] test infrastructure, using the EXTEST 
boundary scan instruction to access the FLASH devices 
for programming.  This technique has limited impact 
on the design and only requires that the FLASH 
memory’s address, data and control signals be directly 
connected to an IEEE 1149.1 compliant device, so that 
the device’s boundary register can be scanned to 
perform FLASH write sequences in EXTEST.  
Although there is little design impact, in-system 
programming of FLASH devices using this method has 
serious performance issues.  Given the large pin count 
of today’s boundary scan devices, and the number of 
boundary-scan devices used on a board, the length of 
the scan path becomes a major limiting factor in 
FLASH programming times when using this method.  
Other factors such as the maximum TCK frequency 
achievable on the PCB, the amount of program data to 
be written, the number of scans the FLASH device 
requires for each write cycle, and the “burn time” 
requirements of the FLASH device, also impact the 
total programming time.  While it has been suggested 
by some to add direct physical access to the FLASH 
device’s Ready/Busy pins, if the time to scan a long 

boundary-scan chain is longer than the minimum 
FLASH “ready” time, no benefit is gained.  The 
majority of the time in programming the FLASH is 
shifting the data through the long boundary-registers.  
Incorporating physical access to the FLASH write 
enable (WE) input can cut the programming time 
almost in half, however in practice reducing the 
programming time by half will not result in an 
acceptable improvement.  Programming times in the 
tens of minutes are still not practical in a 
manufacturing environment.  In the field, especially in 
remote areas of the world, it may not be economical to 
supply all field personnel with high-speed boundary-
scan controllers capable of delivering data at 10-
20Mhz.   
 
Furthermore, the added cost of carrying the direct 
access through pins and routes in a passive backplane 
or multi-PCB design cannot be overlooked.  In 
complex multi-PCB systems, adding physical access to 
these pins requires additional design time and adds 
components and design complexity.  “Buffered Factory 
programming” techniques implemented in the FLASH 
itself offer no speed up in FLASH programming when 
the EXTEST technique is used since each word or byte 
must still be scanned in through the boundary-scan 
chain. 

In-system Programming using the FAC 
In order to overcome the obstacles presented above, the 
internal development for a Fast Access Controller 
began in 1997, followed by formal patent write-up at 
the end of 1999 and provisional patent filing with the 
USPTO in March of 2000.  The FAC is an 
infrastructure IP block [5] designed to provide for 
high-speed, high-throughput, in-system configuration 
and test of memories.  It leverages the test 
infrastructure of IEEE  Std. 1149.1 to enable in-system 
programming of FLASH and other non-volatile 
memory devices, as fast as off-board or direct access 
programming techniques. The FAC can achieve 
optimal programming throughput of FLASH devices, 
even with lower test clock rates (<3Mhz).  The scan 
length or number of 1149.1 devices in the boundary-
scan chain of the PCB does not affect the FAC 
architecture.  As a result, the performance issues 
associated with 1149.1-based in-system FLASH 
programming, using the EXTEST approach, are 
eliminated.   
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Figure 1.  IC with Boundary Scan and Fast Access Controller (FAC) 
 
 
 

The performance achieved by the FAC is made 
possible by the novel features of the architecture, 
which are described below.  These features combine to 
minimize the number of scan operations and serial scan 
data required during FLASH programming or memory 
testing.  The memory protocols of the FAC are 
programmable in-system, through PC based boundary-
scan tools.  The FAC is also customizable in-system, 
which allows it to support access to a wide variety of 
memory devices such as NOR FLASH, NAND 
FLASH, EEPROM, Serial EEPROM, SRAM, SDRAM 
and DDRAM and other memory devices.  Flexibility is 
key to the design as when the FAC is implemented in a 
CPU or ASIC, typically the target memory type or 
memory manufacturer is not known at design time.  
The FAC enables an IEEE Std. 1149.1 bus to be used 
as a central bus for in-system configuration of all on-
board non-volatile memory devices.  In addition, it 
provides a single non-volatile programming method 
that can be used in the field, during prototype bring-up, 
and for manufacturing test and configuration. 
 
The FAC Architecture 
A block diagram of the FAC is shown in Figure 1.  
The FAC is comprised of several functional blocks: the 
Address Generator (AG), the Programmable Control 
Sequencer (PCS), the Programmable Data Sequencer 
(PDS), the Data Register (DATA) and the 
programmable Finite State Machine (PFSM. 
 
In this example implementation of the FAC 
architecture, the FAC is embedded in an IC, such as an 

ASIC or FPGA, and interfaces to a FLASH memory 
device.  The interface to the FLASH is through 
multiplexers that select between the system logic and 
the FAC.  This multiplexing can be integrated into the 
Boundary Scan Register (BSR), as shown in Figure 1. 
The FAC also interfaces to other 1149.1 logic, such as 
the Instruction Register (IR).  It may optionally take 
system clocks as inputs.  These system clocks enable 
the FAC to access a memory device for at-speed test to 
memories especially SDRAM and DDRRAM.  When 
full speed access is not required, the FAC may operate 
from only the TCK clock of the TAP.   
 
The FAC operates through specific FAC-based 1149.1 
instructions, together with the sequencing of the PFSM.  
Figure 2 shows the state diagram of the FAC’s PFSM.  
As can be seen, the PFSM is an extended version of the 
standard IEEE 1149.1 TAP Controller FSM.  The 
PFSM includes a modified DR branch in the state 
machine, which provides for programmable states.  
These programmable states are decoded and used to 
control the operation of the FAC, the FAC registers 
and the protocols it generates.  The FAC branch is 
taken from the Select-DR-Scan state when there is a 
FAC specific instruction loaded into the IR, i.e. 
FAC_Op = 1 and TMS = 0.  This FAC_Op branch 
provides the ability to perform protocol sequences that 
are not possible to perform in the DR branch of the 
standard 1149.1 TAP controller FSM.  Because the 
PFSM allows programmable states, the placement of 
the Capture-DR, Update-DR and Pause-DR states in 
the FAC_Op branch can be determined based on the 
FAC instruction and its operation.  This removes the 
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restrictions of the fixed protocols in the standard TAP 
controller FSM, allowing for an extended test 
capability.  Nevertheless, the PFSM remains 
compatible with the standard IEEE 1149.1 architecture.  
An example of FAC operation for a 
FLASH_PROGRAM instruction is provided in the 
next section. 
 
The PFSM states are defined as follows: 
� Enter-FAC.  Enables the FAC. 

 
 
 
 
 
 
 
 
 
 

� APG1-DR. Enables FAC operations concurrent 
with DR shift.  May also be used for Pause-DR. 

� Update1/Capture1-DR.  Programmable Update-
DR and/or Capture-DR and FAC operation.  

� APG2-DR. Enables FAC operations concurrent 
with DR shift.  May also be used for Pause-DR. 

� Update2Capture2-DR.  Programmable Update-DR 
and/or Capture-DR and FAC operation. 

� Exit-FAC.  Disables the FAC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  The Programmable FSM of the FAC’s 

TAP Controller 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3.  FAC Block Diagram 
 
 
 
 
 
 
 
 

Figure 3 shows a more detailed diagram of the 
functional blocks in the FAC, and how they interface to 
each other.  The PFSM connects to an IR, to the other 
FAC blocks, and to the standard 1149.1 DRs of the IC 
(i.e., the Bypass Register and a BSR, which are not 
shown in figure 3).  The FAC also has a number of 
DRs, which can be accessed individually or in some 
implementations all of the registers are linked together 
except the DATA register which is accessed separately 
during the reading or writing to the memory.   Each of 
the PCS, AG, DATA and PDS blocks shown in figure 
3 has one or more DRs.  These are used to load data, 
address and control protocol into the FAC, either 
initially or while it is in operation.  The DRs may be 
dedicated registers for use only during FAC operation, 
or may be shared with the BSR or functional registers 
(i.e., other internal scan registers) of the IC.  

 
The FAC blocks receive control inputs from the PFSM 
and the IR logic. The DR_Select control signals from 
the IR are used to select the FAC DR to be shifted, 
while the DR_Control signals from the PFSM are used 
to control the scan shift operations of the DRs.    The 
FAC_Cntrl signals are also received from the IR logic, 
which controls and enables FAC operation together 
with the PFSM states. 
 
During operation of the FAC the PCS provides the 
FLASH’s Control signals via the test multiplexers, 
shown in figure 3, in a pre-programmed sequence.  
This control sequence, or protocol, is directly 
programmable by means of the PCS DR(s).  The PCS 
is enabled to operate during the FAC_Op states of the 
PFSM.  Depending on the FAC instruction loaded into 
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the IR, and the PFSM state, the PCS will be started or 
stopped, or simply continue to execute its protocol 
sequence to the circuit connected to the FAC.  The PCS 
and the other functional blocks of the FAC are 
permitted to execute concurrently with the operations 
in the FAC_Op branch.  For example, the PCS and AG 
can operate during the APG1-DR (Shift-DR) state, so 
that the data DR in the DATA logic can be scanned 
concurrently while control and address signals are 
being applied to the FLASH automatically by the PCS 
and AG.  This feature of the FAC architecture provides 
for optimal scan-based access to the FLASH device. 
 
In addition to sequencing the controls to the FLASH, 
the PCS also interfaces to the other functional blocks of 
the FAC, such as the AG, PDS or DATA, in order to 
sequence them along with the protocol for accessing 
the FLASH.  For example, the PCS may select or 
control a particular address sequence to be generated 
by the AG, or a data sequence to be generated by the 
PDS.  During its operation, the FAC logic can be 
synchronized with either the TCK clock or system 
clocks, so that it can operate at the full system speed of 
the memory device being accessed. 
 
The AG logic outputs address sequences through the 
test multiplexers onto the FLASH’s Address bus, as 
shown in figure 3.  By automatically providing address 
sequences from the AG to the memory device 
connected to the FAC, as opposed to providing the 
addresses via the BSR, scan operations do not have to 
be performed each time a new memory location is 
accessed.  The AG may contain one or more address 
generation circuits.  For example, it may include both 
an address counter, to sequentially address the FLASH 
during read/program operations, and an address 
sequence generator, which is used to generate fixed 
sequences of addresses for the FLASH’s program/erase 
commands.  Each of these generators in the AR logic 
may have a DR and instructions to scan the DRs allow 
the AR address registers to be initialized to a starting 
address if desired.  The address generation sequences 
are selected and controlled by specific FAC 
instructions, the PFSM and the PCS.  For example, in 
the FLASH implementation of figures 1 and 3, during a 
read operation controls from the PCS signal the AR to 
advance to the next memory address to be accessed by 
the FAC as the read protocol is being sent by the PCS.  
 
The DATA and PDS logic shown in figure 3 provide 
for read/write operations, and special data sequences, 
to/from the FLASH device.  The DATA register is a 
DR that can be scanned during FAC operation to scan-
in write data, to be written to the memory, or scan-out 
read data, that has been read from the memory.  In the 

FLASH implementation of figures 1 and 3, the PDS is 
programmed with data sequences required for the 
FLASH’s program/erase commands.  The DATA and 
PDS logic are controlled based on the instruction 
loaded in the IR, the PFSM states, and the PCS 
protocol.  For example, during a FLASH_PROGRAM 
instruction, the DR of the DATA logic is scanned 
during the APG1-DR state, while the PDS outputs data 
values for a program command sequence to the 
FLASH data bus.  The DATA DR being separate from 
the PDS DR allows it to be scanned concurrently, 
while the PDS is outputting data and the PCS is 
outputting control signals.  When read or write data 
from the FLASH is transferred from/to the DATA DR, 
it receives the proper control input for Capture and 
Update operations from the FAC TAP DR_Control 
signals. 
 
Table 1 illustrates this concurrent operation of the 
functional blocks in the FAC.  The table shows a short 
sequence of PCS controls and the data and addresses 
output by the PDS/DATA and AR respectively.  As the 
PCS sequences through the FLASH’s CEN, OEN and 
WEN controls, the AG and PDS output fixed address 
and data sequences corresponding to a FLASH 
program command.  During this sequence, the DR in 
the DATA logic can be scanned with write data.  When 
the PCS’s CTA and CTD control is 1, it selects the 
address and write data for the program command to be 
sourced from the AG’s address counter and the 
DATA’s DR, respectively. CTA and CTD are separate 
for other types of memories where the Address is not 
delivered in the same sequence as the data as it is with 
the example FLASH.  The signals in the shaded area of 
Table 1 are for implementing the sequences for use 
with NAND FLASH devices and DRAM devices.  In 
the FAC implementation Table 1, essentially has 
equivalent sized scan registers that are filled during 
FAC initialization with the values to be used for a 
particular memory.   The CMP signal can be used to 
force a comparison between the data in the data register 
(the data written) and a subsequent read back of the 
data from the memory.  This should be done with 
caution as it does not allow ‘data uniqueness’.  
Consider if the device is a EEPROM or SRAM, if data 
is read back directly after writing then all address lines 
could be stuck, yet verification would pass as each 
unique data value would be written over and over to 
the same address. 
 
FAC Operation 
To further illustrate the operation of the FAC, the 
following steps provide an example of how a 
FLASH_READ instruction works. 
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Table 1.   Example FAC PCS, AG and PDS/DATA Sequencing 
 
 
 
The read starts with the following FAC initialization 
steps: 
 
1. Reset the TAP controller.  This will also reset the 

FAC. 
2. The PRELOAD instruction and the boundary-

register is loaded into the IC with the FAC and 
other ICs that are present on the PCB as needed. 

3. Load the SHIFT_PCS_AR instruction into the IR.  
Load the PCS’s DR with the read protocol and 
initialize the AR with a starting address. 

3.     Load the FAC_READ instruction into the IR. 
  
4. The FAC_READ instruction sets FAC_Op = 1, 

enabling FAC operation. Subsequent TAP 
controller protocol is decoded on the FAC_Op 
branch of the PFSM, it also selects the DR in the 
DATA block. 

 
After the read instruction is updated, the following 
steps are taken: 
 
5. Transition the PFSM to Enter-FAC to start the 

FAC operation. 
6. The PFSM moves to APG1-DR and the DR in the 

DATA logic is shifted.  Concurrently, the PCS and 
AR apply a read sequence to the FLASH with the 
first address in the AR address counter DR.  

 
Note that the initial scan-out data that is shifted out of 
the DR is “don’t care” data, since the first read has not 
been completed.  Scan-in data is not used during reads, 
so it can be set to all ones or all zeroes data. 
 
7. When the PFSM enters Update1/Capture1-DR the 

last bit of the DATA DR is shifted.  During this 
DR shift, the read cycle to the memory completes. 

8. The PFSM transition through Update1/Capture1-
DR and entering APG2-DR the data read from the 
FLASH is captured into the DATA DR. 

9. The PFSM is moved back to APG1-DR and step 1 
is repeated, with the data from the first read being 
scanned out while the next address is read. 

10. After the final read address has been shifted out of 
the DATA DR, the PFSM can move directly from 
Update1/Capture1-DR to Exit-FAC, and then back 
to Run-Test/Idle. 

 
When the PFSM enters Exit-FAC, it sets FAC_Op = 0 
and disables the FAC operation.  It should be noted that 
in step 7, the FAC could wait in APG2-DR for 
additional TCK cycles if “Pause-DR” time is required  
 
for a particular FAC operation.  For example, to 
account for the burn time when programming the 
FLASH. 
 

TDO

CNTRL

U1
U2

W/ FAC

TCK

TMS

TDI TDO TDI

SRAM

CNTRL

ADDR

DATA

FLASH

            Figure 4. 
 

AG 0x5555 0x5555 0x2AAA 0x2AAA 0x5555 0x5555 AddrCnt AddrCnt AddrCnt AddrCnt  
PDS/ 
DATA 

0x00AA 0x00AA 0x0055 0x0055 0x00AA 0x00AA DATA DATA DATA DATA 

 CMP 0 0 0 0 0 0 0 0 0 1 

CTA 0 0 0 0 0 0 1 1 1 1 

CTD 0 0 0 0 0 0 1 1 0 0 

DDIR 1 1 1 1 1 1 1 1 0 0 

CEN[0] 0 0 0 0 0 0 0 0 0 0 

OEN 1 1 1 1 1 1 1 1 0 0 

WEN 0 1 0 1 0 1 0 1 1 1 

A/D 0 0 0 0 0 0 0 0 0 0 

RAS 0 0 0 0 0 0 0 0 0 0 

CAS 0 0 0 0 0 0 0 0 0 0 

BA[0..2] 0 0 0 0 0 0 0 0 0 0 

CKE 0 0 0 0 0 0 0 0 0 0 

 PC
S

 

CK 0 0 0 0 0 0 0 0 0 0 
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In order to disable the data bus on the PCB so FLASH 
programming can begin, certain PCBs will require 
components on the data bus to be put in EXTEST or 
CLAMP.  If U1 of Figure 4 did not support CLAMP 
then its entire boundary-scan register would be in the 
scan path with the FAC registers of U2.  If the FAC 
architecture required going through CAPTURE-DR or 
UPDATE-DR, then programming performance would 
be affected and throughput would not be much better 
than using EXTEST alone.  FAC data registers capture 
and update data in the UPDATE1/CAPTURE1state of 
the FAC TAP. Because of this U1 is does not go 
through UPDATE-DR or CAPTURE-DR during the 
programming operation of the FAC, thus giving FAC 
based programming independent of scan-chain length. 
The FAC TAP also enables shifting of data on TDO 
during the APG2 state.  During the APG2 state, status 
of the RDY/DQ7 bit indicating programming has 
completed, can be passed through the TDO back to the 
IEEE 1149.1 controller.  When RDY is asserted this 
tells the 1149.1 controller (which is also FAC aware) to 
proceed from waiting in the APG2 state to move to the 
APG1 state to shift more data.  By bringing the RDY 
bit through this way, optimal 1149.1 programming can 
be achieved without scanning a register or without 
having direct physical access to the RDY pin. The 
RDY status and the verification bit comparing the data 
read with the data written can be combined and 
returned on TDO during APTG2 as well.  This can 
signal to the 1149.1 controller during the write process 
that the programming failed and further programming 
can be halted. Alleviating the need to have direct 
access to the RDY pin simplifies multi-PCB system 
level designs and PCBs with daughter cards enabling 
non-volatile memories to be programmed anywhere in-
system with access to just the 5 wire 1149.1 bus. 
 
FAC Performance 
Comparing the programming times for the EXTEST 
Boundary Scan method, with that of the FAC, will 
show the improved performance of the FAC.  Using an 
Intel StrataFLASH (28F128J3Ax16) as an example of 
a typical FLASH device, the following can be used to 
calculate the respective programming times: 
 
� 128Mbits of memory, with a 16 bit data bus and 

8M addresses. 
� The typical burn time is 218us per buffer (16 

words), 
� 512k (524,288) buffer writes are required to 

program the entire 128Mbit FLASH. 
� The PCB containing the FLASH and IC with 

Boundary Scan requires 736 BSR cells in the 
1149.1 chain in order to access the FLASH device. 

� The TCK clock rate is 10MHz. 
� It takes 19 scan operations to program 1 buffer of 

16 words. 
 
Note that these specifications are taken from a 
demonstration PCB that includes the Intel FLASH 
device, and several other Boundary Scan devices.  The 
FAC was programmed into an FPGA with access to the 
Intel Strataflash for the following calculations. 
 
Using the Boundary Scan method, the time to program 
1 buffer of 16 words is as follows: 
 
Time for 1 buffer = 1/TCK * #BSR cells * #scans 
                            = 0.1us * 736 * 19 = 1.4ms 
 
To program the entire FLASH requires: 
 
Time for FLASH = buffer time * #buffers 
  = 1.4ms * 524,288 = 734 seconds 
 
Using the EXTEST method, it takes 12.2 minutes to 
program the entire FLASH.  Note that this does not 
take into account the device burn time, which can be up 
to 114 seconds or more for the entire FLASH.  This 
time is dominated by the shifting required to program 
the FLASH.  As Boundary Scan chains on ICs and 
PCBs will continue to increase in length, the EXTEST 
method is not a practical solution. 
 
In the FAC implementation for the StrataFLASH, there 
is a DATA DR that holds one write buffer worth of 
data, so the scan length is 16 data bits * 16 words, or 
256 bits long.  In addition there are two extra TCK 
cycles per buffer write, to account for the transition of 
the FAC TAP through APG2-DR and 
Update2/Capture2-DR.  Using the FAC method, the 
time to program 1 buffer of 16 words is: 
 
Time for 1 buffer = 1/TCK * #BSR cells * #scans 
                            = 0.1us * 258 * 1 = 25.8us 
 
To shift data to program the entire FLASH requires: 
 
Time for FLASH = buffer time * #buffers 
  = 25.8us * 524,288 = 13.5 seconds 
 
Since the shifting of the next data and the ‘burn time’ 
of current data can occur concurrently, the shifting time 
is negligible and the ‘burn’ time dominates. The Intel 
specification for this part is 218us typical per buffer 
with 524,288 buffers, the total typical burn time is 
approximately 114 seconds.  However, in practice, the 
‘burn’ time was significantly lower.  The total 
programming time of some sample parts was 
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approximately 104 seconds accounting for some 
software overhead.  Most of the time is due to waiting 
for the FLASH, and is not because of shifting data, as 
was the case for EXTEST based programming. While 
verification can be done while programming with the 
FAC, data uniqueness was required for the customer 
and the FLASH was read back as a separate function.  
This takes 18 TCK cycles per word for 8M locations, 
which at 10Mhz takes approximately 15 seconds, 4 
seconds at a 40Mhz TCK rate. 

Related work 
After the invention of the FAC, but prior to the 
granting of the US patent, a method in the spirit of the 
FAC technique has been presented at ITC [4].  The 
reader should not assume the technique described in 
the ITC paper is in the public domain. It should be 
noted from the above descriptions that a full FAC 
implementation is more generic than what was 
described.  In [4], the method requires going through 
CAPTURE-DR and UPDATE-DR after shifting each 
address and data. The programming times given are 
good only for a single device in the scan-chain.  If the 
device were in the scan path with other on-board 
devices then the address and data would have to be 
shifted through those devices for each word to 
program.  On PCBs with many devices in EXTEST, 
the programming times would be impacted and as long 
as EXTEST programming times.  The same problem 
exists for performing a scan operation to read the DQ7 
or RDY bits.  If the device is in a scan-chain with other 
devices, it can take far longer to shift out the status bit 
than it takes for the typical ‘burn time’. The 
verification immediately after programming also 
described is a FLASH memory only solution, as it 
would not be appropriate for EEPROM programming 
or SRAM test.  No mention in the paper was made on 
how the pass/fail status could be examined during 
programming so programming would halt early on for 
failing devices.  Further, the verification method 
described in [4] is for production only, it would not 
allow data to be downloaded from a memory to a PC 
for the purpose of debugging during bring-up.  The 
ITC paper does not describe whether it can be 
sequenced by a system clock or by TCK.  Without 
access to the system clock, at-speed tests are not 
possible.  Further, if a state machine is sequenced only 
by the TCK, then provision must be provided for 
handling sequences that are longer than the amount of 
data to shift.   For instance, writing to a Serial 
EEPROM as can be done with the FAC requires many 
TCK cycles which can be handled by the FAC in the 
APG2 state. 
 

Conclusions and future work 
The FAC provides a novel solution for programming 
external FLASH in a production environment.  It 
avoids many of the problems with traditional FLASH 
programming methods and boundary-scan based 
programming while it lowers overall product costs and 
downstream PCB manufacturing costs.  The 
programming performance of the FAC has been shown 
to be superior to other in-system programming 
methods, programming FLASH memories as fast as 
off-board or direct access programming solutions can. 
Similar performance can be achieved for other non-
volatile memories such as I2C and SPI EEPROMS, 
NAND FLASH.  The flexibility of the FAC allows it to 
be implemented in an ASIC or CPU where the target 
PCB scan-chain length is unknown and the non-volatile 
memory type is unknown at the time of design.   
 
The FAC enables an IEEE Std. 1149.1 bus to be used 
as a central bus for in-system configuration of all on-
board non-volatile devices, and it provides a single 
non-volatile programming method that can be used on 
systems in the field, during prototype bring-up, or for 
manufacturing production.  This enables last minute 
updates to non-volatile to be done during 
manufacturing, and it eliminates the need for costly 
inventories of pre-programmed devices or costly 
capital equipment to program in-line.  In addition, 
manufacturing can realize shorter programming times 
and improved throughput on the manufacturing floor. 
 
Boundary-Scan test techniques introduce the similar 
problems for DDDRAM and SDRAM test and debug.   
The long scan-chains and typical slow speed make it 
impossible to test the interconnects to most dynamic 
RAM.  Since the density of the typical dynamic 
memory is high, small vias (or no vias) must be used 
during the design of the PCB.  Systems integrators 
have difficulty in inserting additional test pads for 
testing these components with direct in-circuit 
techniques.  Therefore, significant time in design by 
the System integrator and savings in test development 
can be achieved if the silicon designer can envision the 
environment his silicon will be used by his customer.  
Since the FAC can operate at the system clock rate, the 
FAC can perform at-speed interconnect testing to these 
memories without requiring the system’s integrator to 
insert test pads.  The FAC mechanism facilitates 
enables postmortem memory dumps of these external 
memories without disturbing or requiring the system 
CPU to function or execute code.  This has two 
benefits in that it can be used by the silicon designer 
during prototype validation and then later by the 
customer during system bring-up.  Table 1, shows how 
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a single FAC access controller can be used to support 
EEPROM, FLASH, NAND, DRAM and other memory 
types that may be used.  Since the IC/SoC design may 
not be able to predict what external memory type the 
system integrator may used, the configuration of the 
fast access controller is done at run time through 
standard IEEE 1149.1 software. 
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